Partner with ConvertIt.com
New Online Book! Handbook of Mathematical Functions (AMS55) Conversion & Calculation Home >> Reference Information
Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables (AMS55) Purchase the electronic edition of this book in Adobe PDF format! FIRST | PREVIOUS | NEXT | LAST | CONTENTS | PAGE | ABOUT | MEDIUM | LARGE
Below is the OCR-scanned text from this page: 506 CONFLUENT HYPERGEOMETRIC FUNCTIONS 13.2.8 r(a)U(a, b, Z ) Similar integrals for Mc,,,(z) and Wc,,,(z) can be deduced with the help of.,13.1.32' and 13.1.33. Barnes-type Contour Integrals 13.2.9 for larg (-z)l<jr, a, b+O, -1, -2, . . . . The contour must separate the poles of I'(-s) from those of r(a+s); c is finite. 13.2.10 r(a)r(i+a-b)zau(a, b, Z ) 3a for larg z~<TJ a#O, -1, -2, . . ., b - u f l , 2, 3, . . . . The contour must separate the poles of r(--s) from those of r(u+s) and r(l+a-b+s). 13.3. Connections With Bessel Functions (see chapters 9 and 10) Bessel Functions as Limiting Cases If b and z are fixed, 13.3.1 lim{M(a, b, z/a)/r(b) ) =~*-+~1~-,(2,E) a+- 13.3.2 lim(M(a, b,-z/a)/r(b) ) =z++bJb-l(ZdZ) 13.3.3 a+ - lim { r(i+a-b) U(a, b, z/~)}=2z+-**K~-~(2l/z) a+ m 13.3.4 lim{ r(i+a-b)U(a, b, -z/u)) - - -7rier*bzf-fbHf21(2,E) (Yz>O) 13.3.5 - *-1(2rn (YZ<O) a+- -7rie-rfb&fbHt2) Expansions in Series 13.3.6 M(a, 6 , z)=e+T (b-aa-$)(+~)~-*+f (2b-2a-l),,(b-2fZ),, ( b - - a - 3 + n) 5 n!(b>,, * n-0 (-I),, Ib-a-f+n($') (b#0,-1J-2J * . a) 13.3.7 - 5 A,, (iz)+"( b -24 -)"Jb-,+,, (J(2zb -&a)) n=O where &=I, Ai=O, Az=$b, (la + 1 )&+I= (n + b- 1 ) A n -I + ( 2 ~ - a) A,, -2, (a real) 13.3.8 M(a,b,z) r(b) m n -0 =eh' C~Z"(-aZ)'"-b-n'~~-l+,,(2J(-UZ)) where co= 1, c, = - bh, c, = -+(2h-- 1)a +#b(b + l)h2, (n+ 1 ) c,,,, = [ (1 - 2h)n - bh]C,, +[(1-2h)u-h(h-l)(b+n-- 1)]C,,-1 -h(h- l)aC,,-2 (h real) 13.3.9 M(a, b, z)=2CR(a, b)l,,(z) where co = 1, c, (a, b) = 2a/b, n=O CJI+l(a, b)=2aC,,(a+l, b+l)/b-cC,-l(aJ 13.4. Recurrence Relations and Differential Properties 13.4.1 (b-a)M(a-l, b, z)+(2a-6+z)M(a, 6, 2) -aM(a+l, b, z)=O 13.4.2 b(b-l)M(a, b-1, z)+b(l-b-z)M(a, b, 2) +z(b--a)M(a, b+lJ z)=O 13.4.3 (l+a-b)M(a, b, z)-aM(a+l, b, 2) +(b-l)M(a, b-1, z)=O 13.4.4 bM(a, b, z)-bM(a-l, b, z)-zM(a, b+l, z)=O 13.4.5 b(a+z)M(a, 6, z)+z(a-b)Wa, b+1, z> -ubM(a+l, b, z)=O
The page scan image above, and the text in the text box above, are contributions of the National Institute of Standards and Technology that are not subject to copyright in the United States.
©2000-2002 ConvertIt.com, Inc. All rights reserved. ConvertIt.com is a Trademark of ConvertIt.com, Inc. E-mail comments and questions to Info@ConvertIt.com or post a message.