Partner with ConvertIt.com
 New Online Book! Handbook of Mathematical Functions (AMS55) Conversion & Calculation Home >> Reference Information Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables (AMS55) Purchase the electronic edition of this book in Adobe PDF format! FIRST | PREVIOUS | NEXT | LAST | CONTENTS | PAGE | ABOUT | SMALL | MEDIUM | LARGE Below is the OCR-scanned text from this page: INDEX OF Page Ki?(z) repeated integrals of &(z) _ _ _ _ _ _ _ _ _ _ _ _ _ _ 483 K,+w( z ) modified spherical Bessel func- tion of the third kind- . . . . . . . . . . . . . . . . . . . . . 443 K,(z) modified Bessel function _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 374 K(m) complete elliptic integral of the first kind-_ 590 kerz, keiz Kelvin functions _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 379 E(z) logarithmic integral _ _ _ _ - - - - - - - - _ _ _ _ _ _ _ _ _ - 228 lim limit__----_______-_-___________________- 13 loglol: common (Briggs) logarithm- - - - - - _ _ - - - _ _ - 68 log,% logarithm of z to base n _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 67 In z (=log,z) natural, Naperian or hyperbolic logarithm-_..-_ - - - - - - - - - - - _ _ - - - - _ _ - - - _ _ - _ _ - 68 f i ~ ( t ) l=j(s\ Laplace transform- - - - - - - - - - - - 1020 L(h, k, p) cumulative bivariate normal proba- bility function _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 936 Ln(z) 775 L,Ca) (2) generalized Laguerre polynomial---- - - - - 775 L,(z) modified Struve function _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 498 m = ~ l ' m e a n - _ - _ _ - _ - - - - - - _ _ - - - - . - - - - - - - - - - - - - 928 m parameter (elliptic functions) _ _ _ - - - - - - - - - - - - 569 ml complementary parameter- - - - -. - - - - - - - - - - - - 569 M(a, b, z) Kumnier's confluent hypergeometric function_____________-_______-__________-- 504 Mc,(J)(z, q) modified Mathieu function-_ _ _ _ _ _ _ _ - 733 M s P ( z , q) modified Mathieu function _ _ _ _ _ _ _ _ _ _ 733 M,,,,(z) Whittaker function- - - - _ _ _ _ _ _ _ _ - - _ _ _ _ _ 505 n characteristic of the elliptic integral of the third kind____---_____-_---_______-_-_________- 590 O(v,) =u,, un is of the order of v , (u,/v, is bounded) - 15 o(v,)=u,, lim-=O _______________-._________ 259 On(%) 363 p(n) number of partitions, _ _ _ _ _ _ _ - _ _ _ _ _ _ _ _ _ _ _ 825 <@z) Weierstrass elliptic function _ _ _ _ _ _ _ _ _ _ _ _ _ ~ 629 ph z phase of the complex number z _ _ _ _ _ _ _ _ _ _ _ _ 16 P(a,z) incomplete gamma funrtion- - _ _ _ _ _ _ _ _ _ _ _ 260 P(r21v) probability of the x2-distribution-_-_- 262,940 P:(z) associated Legendre function of the first kind_____--___-_---_-___________________- 332 P(z) normal probability function--- - _- - - - - - - - - - 931 P n ( z ) Legendre function (spherical polynomials) - 333, 774 Pz(r) shifted Legendre polynomial--- - - - - - - - _ _ - 774 P,,("J)(z) Jacobi polynomial- - - - - - - - - - - - - - - - - - - - 774 Pr( X Sz] probability of the event x 5%- - - - - - - - 927 q nome____________________________________- 591 Q(z) = 1 - P(z) area),-----_---_---------------__-_-------- 931 Laguerre polynomial- - - - - - - - - - - - - - - - - - - U n n - f m v n Neumann's polynomial- - - - - - - - -. - - - - _ _ - normal probability function (tail TOTATIONS q(n) number of partitions into distinct integer summands________________________________ Q\$(z) associated Legendre funhtion of ,the second' kind-___________________________________- Q,(z) Legendre function of the second kind-.._--- 9 2 real part of z(=z) _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ R?;(c, 5 ) radial spheroidal wave function- _ _ - - - - - S,(" Stirling number of the first kind _ _ _ _ _ _ _ _ _ _ _ gincrn) Stirling number of the second kind - - __ - - - - 8e,(z, q) Mathieu function _ _ _ _ - - - - - - - - - - - - - - - sn Jacobian elliptic function- - - - - - - - - - - - - - - - - - - S(z) Fresnel integral _ _ _ _ _ - - _ _ _ _ _ _ _ _ - - - - - - - - - - - Sl(z), &(z) Fresnel integrals _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Se,(z, q) modified Mathieu function _ _ _ _ _ _ _ _ _ _ _ _ S(z, a ) generalized Fresnel integral- - - - - - - - - - - - - Shi(z) hyperbolic sine integral- - - - - - - - - - - - - - - - - Si(z) sine integral- _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ S,(z) Chebyshev polynomial of the first kind_- _- Sih(z) hyperbolic sine integral- - - - - - - - - - - - - - - - - S\$;(c, 7 ) angular spheroidal wave function--_- - - si(z) sine integral _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ sin z, cos 2, tan z circular functions _ _ _ _ _ _ _ _ _ _ _ _ _ cot z, sec 2, csc z _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ sinh z, cosh z, tanh z hyperbolic functions _ _ _ _ _ _ _ coth z, sech z, csch z _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ T(m,n,r) Toronto function _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ T,(z) Chebyshev polynomial of the first kind-- - - T:(z) shifted Chebyshev polynomial of the first kind-______---__________________________- U(a, b, z ) Kummer's confluent hypergeometric function______--________________________-- U,(z) Chebyshev polynomial of the second kind- K(z) shifted. Chebyshev polynomial of the second kind__________________________________--------~----- U(a, z) Weber parabolic cylinder function--- - _- - vers'A, versine A _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ V(a, z) Weber parabolic cylinder functipn- - - - - - w(z) error function _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ W(a, z) Weber parabolic cylinder function - - - - - - W K . ~ ( Z ) Whittaker function _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ W(f(z), g(z) I (=f(z)g'(z) --f(z)g(z)) Wronskian re- l a t i o n ___- __________- - - ~- - - - - - ~- - - - - - - - - - - [ZO, 21, . . . , zk] divided difference _ _ _ _ _ _ _ - _ _ _ _ _ _ - y,(z) spherical Bessel function of the second kind- Y,(z) Bessel function of the second kind _ _ _ _ _ _ _- Y:(& (p) surface harmonic of the first kind- - - - - - Z(z) normal probability .density function- - - - _ - - - Page g25 332 334 16 753 824 824 725 569 300 300 733 262 231 231 774 231 753 232 71 72 83 83 509 774 774 504 774 774 687 78 687 297 692 505 505 877 437 358 332 931 The page scan image above, and the text in the text box above, are contributions of the National Institute of Standards and Technology that are not subject to copyright in the United States.